Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.103
Filtrar
1.
J Environ Manage ; 357: 120851, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38581894

RESUMO

Conventional liquid treatments for large-scale, low-level radioactive wastewater, such as ion exchange and waste solidification, face challenges due to the large amounts of secondary waste and high disposal costs. A new large-scale decontamination method is proposed that uses kapok fiber composites for rapid radionuclide adsorption and high volume reduction to minimize secondary waste. The composite consists of natural zeolite and kapok holocellulose, which has high water-soaking ability and low-temperature pyrolysis. The kapok composites, fabricated using a commercial wet-laid nonwoven manufacturing process, absorbs 99% of low-level radioactive cesium in 20 min, reducing the volume by 98% and the weight by 47% at 300 °C. The low-temperature pyrolysis process below 300 °C prevents cesium desorption and gasification by avoiding zeolite destruction. The mass-producible kapok composites can be used for adsorbing various radionuclides in large-scale wastewater by attaching specific adsorbents for target isotopes to the composites.


Assuntos
Resíduos Radioativos , Zeolitas , Águas Residuárias , Césio , Radioisótopos , Adsorção , Resíduos Radioativos/prevenção & controle
2.
Sci Rep ; 14(1): 7630, 2024 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-38561437

RESUMO

When radioactive materials are released into the environment due to nuclear power plant accidents, they may enter into the body, and exposing it to internal radiation for long periods of time. Although several agents have been developed that help excrete radioactive elements from the digestive tract, only one type of radioactive element can be removed using a single agent. Therefore, we considered the simultaneous removal of caesium (Cs) and strontium (Sr) by utilising the multiple metal removal mechanisms of probiotic bacteria. In this study, the Cs and Sr removal capacities of lactobacilli and bifidobacteria were investigated. Observation using an electron probe micro analyser suggested that Cs was accumulated within the bacterial cells. Since Sr was removed non metabolically, it is likely that it was removed by a mechanism different from that of Cs. The amount of Cs and Sr that the cells could simultaneously retain decreased when compared to that for each element alone, but some strains showed only a slight reduction in removal. For example, Bifidobacterium adolescentis JCM1275 could simultaneously retain 55.7 mg-Cs/g-dry cell and 8.1 mg-Sr/g-dry cell. These results demonstrated the potentials of utilizing complex biological system in simultaneous removal of multiple metal species.


Assuntos
Césio , Estrôncio , Bactérias , Radioisótopos de Estrôncio/análise , Radioisótopos de Césio
3.
J Environ Sci (China) ; 143: 126-137, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38644011

RESUMO

Radioisotope leaking from nuclear waste has become an intractable problem due to its gamma radiation and strong water solubility. In this work, a novel porous ZnFC-PA/PSF composite sphere was fabricated by immobilization of ferrocyanides modified zinc phytate into polysulfone (PSF) substrate for the treatment of Cs-contaminated water. The maximum adsorption capacity of ZnFC-PA/PSF was 305.38 mg/g, and the removal efficiency of Cs+ was reached 94.27% within 2 hr. The ZnFC-PA/PSF presented favorable stability with negligible dissolution loss of Zn2+ and Fe2+ (< 2%). The ZnFC-PA/PSF achieved high-selectivity towards Cs+ (Kd = 2.24×104 mL/g) even in actual geothermal water. The adsorption mechanism was inferred to be the ion-exchange between Cs+ and K+. What's more, ZnFC-PA/PSF worked well in the fixed-bed adsorption (E = 91.92%), indicating the application potential for the hazardous Cs+ removal from wastewater.


Assuntos
Poluentes Químicos da Água , Adsorção , Poluentes Químicos da Água/química , Purificação da Água/métodos , Sulfonas/química , Polímeros/química , Porosidade , Césio/química , Eliminação de Resíduos Líquidos/métodos , Zinco/química , Águas Residuárias/química
4.
Sci Rep ; 14(1): 7834, 2024 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-38570597

RESUMO

Potassium channels belong to the super family of ion channels and play a fundamental role in cell excitability. Kir channels are potassium channels with an inwardly rectifying property. They play a role in setting the resting membrane potential of many excitable cells including neurons. Although putative Kir channel family genes can be found in the Apis mellifera genome, their functional expression, biophysical properties, and sensitivity to small molecules with insecticidal activity remain to be investigated. We cloned six Kir channel isoforms from Apis mellifera that derive from two Kir genes, AmKir1 and AmKir2, which are present in the Apis mellifera genome. We studied the tissue distribution, the electrophysiological and pharmacological characteristics of three isoforms that expressed functional currents (AmKir1.1, AmKir2.2, and AmKir2.3). AmKir1.1, AmKir2.2, and AmKir2.3 isoforms exhibited distinct characteristics when expressed in Xenopus oocytes. AmKir1.1 exhibited the largest potassium currents and was impermeable to cesium whereas AmKir2.2 and AmKir2.3 exhibited smaller currents but allowed cesium to permeate. AmKir1 exhibited faster opening kinetics than AmKir2. Pharmacological experiments revealed that both AmKir1.1 and AmKir2.2 are blocked by the divalent ion barium, with IC50 values of 10-5 and 10-6 M, respectively. The concentrations of VU041, a small molecule with insecticidal properties required to achieve a 50% current blockade for all three channels were higher than those needed to block Kir channels in other arthropods, such as the aphid Aphis gossypii and the mosquito Aedes aegypti. From this, we conclude that Apis mellifera AmKir channels exhibit lower sensitivity to VU041.


Assuntos
Canais de Potássio Corretores do Fluxo de Internalização , Animais , Abelhas/genética , Canais de Potássio Corretores do Fluxo de Internalização/genética , Potenciais da Membrana/fisiologia , Potássio , Clonagem Molecular , Isoformas de Proteínas/genética , Césio
5.
Front Endocrinol (Lausanne) ; 15: 1310044, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38532896

RESUMO

Introduction: Non-alcoholic fatty liver disease (NAFLD) is a global public health concern. However, limited data are available on urinary trace elements and NAFLD caused by various exposure factors. This study aimed to investigate the relationship between the presence of 16 trace elements in urine and NAFLD using data from the National Health and Nutrition Examination Survey (NHANES). Methods: By utilizing the NHANES data from 2017 to 2018, 1613 participants who fulfilled the research criteria were identified from the initial pool of 2979 participants with available urine trace element detection data. Among them, 706 individuals had been diagnosed with NAFLD based on a coefficient of attenuation parameter (CAP) value of at least 274 db/m, determined using vibration-controlled transient elastography (VCTE); whereas the remaining 907 participants were classified as non-NAFLD. The data obtained were used to construct univariate and multivariate logistic regression models and restricted cubic spline models (RCS) analyses. Results: The presence of arsenic, iodine, barium, cesium, molybdenum, lead, tin, and tungsten in the urine of individuals with NAFLD showed a positive correlation with the likelihood of developing NAFLD. The risk of NAFLD had a non-linear dose-dependent relationship with urinary iodine, molybdenum, barium, and cesium. NAFLD was also associated with elevated levels of barium and cesium in urine, which were identified as significant risk factors. Conclusion: These findings suggest a positive association between exposure to trace elements in the urine and the risk of NAFLD. Specifically, urinary barium and cesium appeared to have the greatest impact on the risk of NAFLD. These results provide novel insights into the diagnosis and treatment of NAFLD.


Assuntos
Técnicas de Imagem por Elasticidade , Iodo , Hepatopatia Gordurosa não Alcoólica , Oligoelementos , Humanos , Hepatopatia Gordurosa não Alcoólica/complicações , Inquéritos Nutricionais , Técnicas de Imagem por Elasticidade/métodos , Vibração , Molibdênio , Bário , Césio
6.
Environ Sci Technol ; 58(14): 6170-6180, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38501927

RESUMO

As human society has advanced, nuclear energy has provided energy security while also offering low carbon emissions and reduced dependence on fossil fuels, whereas nuclear power plants have produced large amounts of radioactive wastewater, which threatens human health and the sustainability of water resources. Here, we demonstrate a hydrate-based desalination (HBD) technology that uses methane as a hydrate former for freshwater recovery and for the removal of radioactive chemicals from wastewater, specifically from Cs- and Sr-containing wastewater. The complete exclusion of radioactive ions from solid methane hydrates was confirmed by a close examination using phase equilibria, spectroscopic investigations, thermal analyses, and theoretical calculations, enabling simultaneous freshwater recovery and the removal of radioactive chemicals from wastewater by the methane hydrate formation process described in this study. More importantly, the proposed HBD technology is applicable to radioactive wastewater containing Cs+ and Sr2+ across a broad concentration range of low percentages to hundreds of parts per million (ppm) and even subppm levels, with high removal efficiency of radioactive chemicals. This study highlights the potential of environmentally sustainable technologies to address the challenges posed by radioactive wastewater generated by nuclear technology, providing new insights for future research and development efforts.


Assuntos
Césio , Águas Residuárias , Humanos , Estrôncio , Água Doce , Metano/química
7.
Environ Sci Pollut Res Int ; 31(17): 25342-25355, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38472574

RESUMO

We investigated the structural changes in clay minerals after Cs adsorption and understood their low desorption efficiency using an ion-exchanger. We focused on the role of interlayers in Cs adsorption and desorption in 2:1 clay minerals, namely illite, hydrobiotite, and montmorillonite, using batch experiments and XRD and EXAFS analyses. The adsorption characteristics of the clay minerals were analyzed using cation exchange capacity (CEC), maximum adsorption isotherms (Qmax), and radiocesium interception potential (RIP) experiments. Although illite showed a low CEC value, it exhibited high selectivity for Cs with a relatively high RIP/CEC ratio. The Cs desorption efficiency after treatment with a NaCl ion exchanger was the highest for illite (74.3%), followed by hydrobiotite (45.5%) and montmorillonite (30.3%); thus, Cs adsorbed onto planar sites, rather than on interlayers or frayed edge sites (FESs), is easily desorbed. After NaCl treatment, XRD analysis showed that the low desorption efficiency was due to the collapse of the interlayer-fixed Cs, which tightly narrowed the interlayers' hydrobiotite due to the ion exchange of divalent cations (Mg2+ or Ca2+) into the monovalent cation (Na+). Moreover, EXAFS analysis showed that hydrobiotite formed inner-sphere structures after NaCl desorption, indicating that it was difficult to remove Cs from NaCl desorption due to the collapsed hydrobiotite and montmorillonite interlayers as well as the strong bonding in FESs of illite. In contrast, chelation desorption using oxalic acid effectively dissolved the narrowed interlayers of hydrobiotite (98%) and montmorillonite (85.26%), enhancing the desorption efficiency. Therefore, low desorption efficiency for Cs clays using an ion exchanger was caused by the collapsed interlayer due to the exchange between monovalent cation and divalent cation.


Assuntos
Bentonita , Césio , Argila , Césio/química , Adsorção , Cloreto de Sódio , Minerais/química , Cátions Monovalentes , Silicatos de Alumínio/química
8.
Chemosphere ; 354: 141725, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38492679

RESUMO

Accumulation of mismanaged plastic in the environment and the appearance of emerging plastic-derived pollutants such as microplastics strongly demand technologies for waste plastic utilization. In this study, polyethylene terephthalate (PET) from waste plastic bottles was directly utilized to prepare a matrix of an adsorbent for cesium (Cs+) removal. The organic matrix of PET-derived oligomers obtained by aminolysis depolymerization was impregnated with bentonite clay and magnetite nanoparticles (Fe3O4 NPs), playing the roles as a major adsorptive medium for Cs+ removal and as a functional component to primarily provide efficient separation of the hybrid adsorbent from aqueous system, respectively. The obtained hybrid composite microparticles were next tested as an adsorbent for the removal of Cs+ cation from aqueous solutions. The adsorption process was characterized by fast kinetics reaching ca. 60% of the equilibrium adsorption capacity within 5 min and the maximum adsorption capacity toward Cs+ was found to be 26.8 mg/g. The adsorption process was primarily dominated by the cationic exchange in bentonite, which was not significantly affected by the admixture of the competing mono- and divalent cations (Na+, K+, and Mg2+). The proposed approach here exploits the sustainable utilization scenario of plastic waste-derived material to template complex multifunctional nanocomposites that can find applications for pollution cleaning and environmental remediation.


Assuntos
Césio , Poluentes Químicos da Água , Polietilenotereftalatos , Bentonita , Plásticos , Adsorção , Água , Cátions , Fenômenos Magnéticos , Poluentes Químicos da Água/análise , Cinética , Concentração de Íons de Hidrogênio
9.
Chemosphere ; 353: 141570, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38447900

RESUMO

Selective adsorption is the most suitable technique for eliminating trace amounts of 137Cs from various volumes of 137Cs-contaminated water, including seawater. Although various metal ferrocyanide (MFC)-functionalized magnetic adsorbents have been developed for the selective removal of 137Cs and magnetic recovery of adsorbents, their adsorption capacity for Cs remains low. Here, magnetic hierarchical titanium ferrocyanide (mh-TiFC) was synthesized for the first time for enhanced Cs adsorption. Hierarchical TiFC, comprising 2-dimensional TiFC flakes, was synthesized on SiO2-coated magnetic Fe3O4 particles using a sacrificial TiO2 shell as a source of Ti4+ via a reaction with ferrocyanide under acidic conditions. The resultant mh-TiFC exhibited the highest maximum adsorption capacity (434.8 mg g-1) and enhanced Cs selectivity with an excellent Kd value (6,850,000 mL g-1) compared to those of previously reported magnetic Cs adsorbents. This enhancement was attributed to the hierarchical structure, which reduced intracrystalline diffusion and increased the surface area available for direct Cs adsorption. Additionally, mh-TiFC (0.1 g L-1) demonstrated an excellent removal efficiency of 137Cs exceeding 99.85% for groundwater and seawater containing approximately 22 ppt 137Cs. Therefore, mh-TiFC offers promising applications for the treatment of 137Cs-contaminated water.


Assuntos
Radioisótopos de Césio , Césio , Poluentes Químicos da Água , Césio/química , Água/química , Titânio , Ferrocianetos/química , Dióxido de Silício/química , Adsorção , Fenômenos Magnéticos , Poluentes Químicos da Água/análise
10.
J Phys Chem B ; 128(13): 3081-3089, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38506761

RESUMO

Inorganic halide-based perovskites (e.g., cesium lead bromide) are tremendously useful semiconducting materials due to their unique optoelectronic properties. However, degradation of these perovskites under humid conditions is one of the major drawbacks to prevent their wide applications. Herein, passivated cesium lead bromide nanoparticles are synthesized using p-thiocresol as a passivating ligand, and this stable version of perovskite is later applied successfully as a sensor probe towards cholesterol detection. The designed sensor can detect cholesterol with a lower detection limit of 0.24 ppm and a fast response time of 10 s. The mechanism of quenching PTC@CsPbBr3 upon the gradual addition of cholesterol is discussed. Further, the sensor is successfully applied in the detection of cholesterol in real samples (blood serum). This work presents PTC@CsPbBr3 as a novel sensing platform for detecting cholesterol well in biomedical applications.


Assuntos
Brometos , Compostos de Cálcio , Césio , Colesterol , Chumbo , Óxidos , Titânio
11.
Luminescence ; 39(3): e4706, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38483095

RESUMO

Inorganic cesium lead halide perovskites have evoked wide popularity because of their excellent optoelectronic properties, high photoluminescence (PL) quantum yield (PLQY), and narrowband emission. Here, cesium lead bromide (CsPbBr3 ) quantum dots (QDs) were synthesized via the ligand-assisted re-precipitation method. Post-synthesis treatment of CsPbBr3 QDs using antimony tribromide improved the PL stability and optoelectronic properties of the QDs. In addition, the PLQY of the post-treated sample was enhanced to 91% via post-treatment, and the luminescence observed was maintained for 8 days. The post-synthesis treatment ensured defect passivation and improved the stability of CsPbBr3 perovskite QDs. High-resolution transmission electron microscopy revealed the presence of more ordered, uniform-sized CsPbBr3 QDs after post-synthesis treatment, and the uniformity of the sample improved as the day passed. The formation of a mixed crystal phase was observed from X-ray diffraction in both as-synthesized, as well as post-treated QDs samples with the possibility of a polycrystalline nature in the post-treated CsPbBr3 QDs as per the selected area electron diffraction pattern. The X-ray photoelectron spectroscopy spectra confirmed the presence of antimony and the possibility of defect passivation in the post-treated samples. These QDs can act as potential candidates in various optoelectronic applications such as photodetectors and light-emitting diodes due to their high PLQY and longer lifetime.


Assuntos
Antimônio , Brometos , Compostos de Cálcio , Óxidos , Pontos Quânticos , Titânio , Césio
12.
Chemosphere ; 353: 141510, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38401861

RESUMO

Biotite, a phyllosilicate mineral, possesses significant potential for cesium (Cs) adsorption owing to its negative surface charge, specific surface area (SSA), and frayed edge sites (FES). Notably, FES are known to play an important role in the adsorption of Cs. The objectives of this study were to investigate the Cs adsorption capacity and behavior of artificially weathered biotite and identify mineralogical characteristics for the development of an eco-friendly geologically-based Cs adsorbent. Through various analyses, it was confirmed that the FES of biotite was mainly formed by mineral structural distortion during artificial weathering. The Cs adsorption capacity is improved by approximately 39% (from 20.53 to 28.63 mg g-1) when FES are formed in biotite through artificial weathering using a low-concentration acidic solution mixed with hydrogen peroxide (H2O2). Especially, the Cs selectivity in Cs-containing seawater, including high concentrations of cations and organic matter, was significantly enhanced from 203.2 to 1707.6 mL g-1, an increase in removal efficiency from 49.5 to 89.2%. These results indicate that FES of artificially weathered biotite play an essential role in Cs adsorption. Therefore, this simple and economical weathering method, which uses a low-concentration acidic solution mixed with H2O2, can be applied to natural minerals for use as Cs adsorbents.


Assuntos
Silicatos de Alumínio , Césio , Peróxido de Hidrogênio , Césio/química , Minerais/química , Compostos Ferrosos/química , Adsorção
13.
Chemosphere ; 352: 141462, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38364923

RESUMO

The migration and retention of radioactive contaminants such as 137Cesium (137Cs) in various environmental media pose significant long-term storage challenges for nuclear waste. The distribution coefficient (Kd) is a critical parameter for assessing the mobility of radioactive contaminants and is influenced by various environmental conditions. This study presents machine-learning models based on the Japan Atomic Energy Agency Sorption Database (JAEA-SDB) to predict the Kd values for Cs in solid phase groups. We used three different machine learning models: random forest (RF), artificial neural network (ANN), and convolutional neural network (CNN). The models were trained on 14 input variables from the JAEA-SDB, including factors such as the Cs concentration, solid-phase properties, and solution conditions, which were preprocessed by normalization and log-transformation. The performances of the models were evaluated using the coefficient of determination (R2) and root mean squared error (RMSE). The RF, ANN, and CNN models achieved R2 values greater than 0.97, 0.86, and 0.88, respectively. We also analyzed the variable importance of RF using an out-of-bag (OOB) and a CNN with an attention module. Our results showed that the environmental media, initial radionuclide concentration, solid phase properties, and solution conditions were significant variables for Kd prediction. Our models accurately predict Kd values for different environmental conditions and can assess the environmental risk by analyzing the behavior of radionuclides in solid phase groups. The results of this study can improve safety analyses and long-term risk assessments related to waste disposal and prevent potential hazards and sources of contamination in the surrounding environment.


Assuntos
Césio , Resíduos Radioativos , Césio/análise , Radioisótopos de Césio/análise , Resíduos Radioativos/análise , Japão
14.
Health Phys ; 126(3): 141-150, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38252947

RESUMO

ABSTRACT: To support estimations of early individual internal doses to residents who suffered from the 2011 accident at the Fukushima Daiichi Nuclear Power Plant (FDNPP), we have sought to use whole-body counter (WBC) measurement results of subjects who lived in municipalities neighboring the FDNPP at the time of the accident. These WBC measurements started several months after the accident; the targeted radionuclides were 134Cs and 137Cs. Our previous study had analyzed the relationship between the residual Cs contents of individuals and evacuation behaviors in the period immediately after the accident for residents of Namie-town, one of the most radiologically affected municipalities. Those results suggested that the first major release event at the FDNPP on 12 March 2011 caused significant exposure, particularly to those who delayed evacuation on that day. The present study expanded its scope to include subjects from four towns neighboring the FDNPP (Namie, Futaba, Okuma, and Tomioka) to gather additional evidence of the exposure that took place on 12 March 2011. Additionally, we investigated the relationship between individual cesium doses and subjects' destinations following the largest release event on 15 March 2011. The study population was 1,145 adults. We first divided the subjects into two evacuation groups depending on the distance from the FDNPP and their evacuation whereabouts (25-km boundary) as of 15:00 on 12 March 2011: the G1 group (≥25 km) and the G2 group (<25 km). We further divided these two subject groups into seven subgroups based on the subjects' destinations as of 0:00 on 16 March 2011. Our four main findings are as follows. (1) The 137Cs detection rate was significantly different between the G1 and G2 groups of Namie-town and Futaba-town but not for those of Okuma-town and Tomioka-town. This result corresponds to the plume passage (flowing toward the northwest to the north) in the afternoon of 12 March 2011 and supports our previous study. (2) The upper-percentile committed effective doses (CEDs) of the G2 groups were higher than those of the G1 groups for all four towns, although the between-group difference varied with the town. The highest CEDs were found in the G2 group of Futaba-town, and the lowest CEDs were in the Namie-town G1 group: 0.16 mSv and 0.04 mSv at the 90th percentile, respectively. The CEDs for both the G1 and G2 groups were relatively high for Okuma-town and Tomioka-town compared to those of the G1 group of Namie-town, although the former subjects were expected to be less exposed on 12 March 2011 and then evacuated to remote places, as did the residents of the other towns. (3) The CEDs of the G1 subgroup that evacuated outside Fukushima Prefecture were extremely low, suggesting that these subjects were little exposed on both 12 and 15 March 2011. However, the CEDs of the same G1 subgroup were rather higher than those of the corresponding G2 subgroup for Futaba-town and Okuma-town. We thus speculate that the WBC measurements were likely to have been affected by the contamination occurring in the second-round temporary re-entry (except for the Namie-town residents). (4) The analyses of the Namie-town evacuees indicated that the area including the middle and northern parts of Fukushima Prefecture was relatively more affected by the major release event on 15 March 2011. In conclusion, the early cesium intake due to the FDNPP accident remained detectable in the WBC measurements of certain present subjects; however, further analyses of the available data are necessary for a full understanding of the WBC measurement results.


Assuntos
Radioisótopos de Césio , Acidente Nuclear de Fukushima , Adulto , Humanos , Cidades , Centrais Nucleares , Césio
15.
Planta ; 259(2): 36, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38221596

RESUMO

MAIN CONCLUSION: This is the first report on the involvement of abscisic acid signaling in regulating post-germination growth under Cs stress, not related to potassium deficiency. Cesium (Cs) is known to exert toxicity in plants by competition and interference with the transport of potassium (K). However, the precise mechanism of how Cs mediates its damaging effect is still unclear. This fact is mainly attributed to the large effects of lower K uptake in the presence of Cs that shadow other crucial effects by Cs that were not related to K. RNA-seq was conducted on Arabidopsis roots grown to identify putative genes that are functionally involved to investigate the difference between Cs stress and low K stress. Our transcriptome data demonstrated Cs-regulated genes only partially overlap to low K-regulated genes. In addition, the divergent expression trend of High-affinity K+ Transporter (HAK5) from D4 to D7 growth stage suggested participation of other molecular events besides low K uptake under Cs stress. Potassium deficiency triggers expression level change of the extracellular matrix, transfer/carrier, cell adhesion, calcium-binding, and DNA metabolism genes. Under Cs stress, genes encoding translational proteins, chromatin regulatory proteins, membrane trafficking proteins and defense immunity proteins were found to be primarily regulated. Pathway enrichment and protein network analyses of transcriptome data exhibit that Cs availability are associated with alteration of abscisic acid (ABA) signaling, photosynthesis activities and nitrogen metabolism. The phenotype response of ABA signaling mutants supported the observation and revealed Cs inhibition of root growth involved in ABA signaling pathway. The rather contrary response of loss-of-function mutant of Late Embryogenesis Abundant 7 (LEA7) and Translocator Protein (TSPO) further suggested low K stress and Cs stress may activate different salt tolerance responses. Further investigation on the crosstalk between K transport, signaling, and salt stress-responsive signal transduction will provide a deeper understanding of the mechanisms and molecular regulation underlying Cs toxicity.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Deficiência de Potássio , Arabidopsis/metabolismo , Ácido Abscísico/metabolismo , Césio/metabolismo , Césio/farmacologia , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas
16.
Int J Biol Macromol ; 254(Pt 2): 126864, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37703986

RESUMO

A magnetic micro porous structure composite based on alginate and Prussian blue (M-SA-PB) was simply prepared for cesium removal from the aqueous solutions. The gelation and formation of PB proceeded through the same step, which made the PB homogenously distributed and firmly attached to the alginate matrix. The homogenizer was applied to break down the bulky gel structure into micro-ones, and the lyophilizer will provide the porous structure. Batch cesium sorption experiments showed that the adsorption kinetics and isotherms were attributed to the pseudo-second-order model and Langmuir isotherm. Moreover, the Cs-ion is favorably adsorbed on the M-SA-PB composite surface as a monolayer towards Cs, with a maximum adsorption capacity reach of 191.0 mg/g. Furthermore, the M-SA-PB adsorbent showed excellent adsorption selectivity of Cs from multiple-ion solutions. Our work was extended to use the M-SA-PB composite in dynamic cesium sorption. The column studies showed that the removal efficiency of Cs+ increased with increasing bed depth as well as the initial cesium concentration. Finally, as previously mentioned, the M-SA-PB could be considered an excellent Cs+ scavenger employing both batch and dynamic approaches, which makes it a promising adsorbent for practical investigations.


Assuntos
Césio , Poluentes Químicos da Água , Césio/química , Hidrogéis , Adsorção , Alginatos/química , Cinética , Fenômenos Magnéticos , Poluentes Químicos da Água/química , Concentração de Íons de Hidrogênio
17.
J Environ Radioact ; 272: 107350, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38071796

RESUMO

In this study, microstructural differences and changes in the adsorption capacity of cesium between cement and carbonated cement were investigated. Cement blocks were ground to powder for rapid carbonation, and microscopic variations were characterized by XRF, XRD, FT-IR, SEM, BET, and TGA. The characterization results show that the conversion of Ca(OH)2 and calcium silicate hydrate (C-S-H) gel to CaCO3 in cement after carbonation. And the component of Ca(OH)2 in the powder sample disappeared after three days of rapid carbonation. Batch experiments were used to investigate adsorption under the influence of time, initial cesium concentration, temperature, and ion coexistence. Pseudo-second-order kinetic and Langmuir isothermal model fitting could better describe the adsorption process and the results show that the maximum adsorption capacity of cement after carbonation surges from 29.6 µg‧g-1 to 1.58-5.89 mg‧g-1. (Different carbonating times lead to varying adsorption capacity.) The adsorption capacity decreases with increasing temperature. At temperatures of 293 K and 333 K, the calculated Gibbs free energy change values of cement with different carbonated degrees adsorbing cesium are -10.3 âˆ¼ -14.9 kJ‧mol-1 and -8.03 âˆ¼ -12.4 kJ‧mol-1. And the calculated values of enthalpy change and entropy change are -18.8 âˆ¼ -23.8 kJ‧mol-1 and -27.9 ∼ -37.1 J‧mol-1‧K-1. Combining the characterization and adsorption results, the huge increase in cesium adsorption capacity is closely related to the conversion of Ca(OH)2 to CaCO3, which will provide a new perspective on the adsorption mechanism of cesium in cement.


Assuntos
Monitoramento de Radiação , Poluentes Químicos da Água , Césio/química , Pós , Adsorção , Espectroscopia de Infravermelho com Transformada de Fourier , Termodinâmica , Carbonatos , Água/química , Cinética , Concentração de Íons de Hidrogênio , Soluções
18.
J Environ Radioact ; 272: 107352, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38064936

RESUMO

The Chernobyl accident exposed large areas of northern Europe to radiocaesium (137Cs). We investigated temporal and spatial variation in concentrations of radiocaesium among five functional groups of alpine plants at two mountain areas in central Norway over a 31-year period from 1991 to 2022. Average concentrations of radiocaesium were initially high in lichens and bryophytes at around 4600-6400 Bq/kg dry weight during 1991-1994 but then decreased dramatically over three decades to current concentrations of <200 Bq/kg for all plant groups in 2019-2022. The effective half-life of radiocaesium was estimated to be 4-6 years in lichens and mosses, 7-13 years in herbaceous plants, and 22-30 years in woody plants, which were less than the physical half-life of 30.2 years. Concentrations of radiocaesium were greater at the nutrient-poor site than at the nutrient-rich site, probably due to greater deposition levels at higher elevations and the geographical pattern of the deposition. Functional groups of plants differed with higher concentrations among non-vascular than vascular plants. Common heather Calluna vulgaris was unusual among woody plants with high concentration of radiocaesium, especially in the new shoots. Our new estimates of concentrations and dynamics of radiocaesium for alpine plants in natural environments will be useful for modelling herbivore exposure and evaluating potential impacts on wildlife and human health.


Assuntos
Líquens , Monitoramento de Radiação , Radioatividade , Poluentes Radioativos do Solo , Humanos , Césio , Radioisótopos de Césio/análise , Plantas , Poluentes Radioativos do Solo/análise
19.
Int J Mol Sci ; 24(23)2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-38069346

RESUMO

Conditioning of radioactive waste generated from the operation of medical institutions, nuclear cycle facilities, and nuclear facilities is important for the safety of the environment. One of the most hazardous radionuclides is radioactive cesium. There is a need for more effective solutions to contain radionuclides, especially cesium (Cs+). Geopolymers are promising inorganic materials that can provide a large active surface area with adjustable porosity and binding capacity. The existence of nanosized zeolite-like structures in aluminosilicate gels was shown earlier. These structures are candidates for immobilizing radioactive cesium (Cs+). However, the mechanisms of their interactions with the aluminosilicate framework related to radionuclide immobilization have not been well studied. In this work, the influence of alkaline cations (Na+ or K+) and the aluminosilicate framework structure on the binding capacity and mechanism of interaction of geopolymers with Cs+ is explored in the example of a sodalite framework. The local structure of the water molecules and alkaline ions in the equilibrium state and its behavior when the Si/Al ratio was changed were studied by DFT.


Assuntos
Silicatos de Alumínio , Césio , Césio/química , Cátions , Radioisótopos
20.
Environ Sci Pollut Res Int ; 30(60): 125526-125539, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37999846

RESUMO

Prussian blue (PB) is widely used for the selective removal of radioactive cesium ions (Cs+) from aqueous solutions. Due to its small size and easy dispersion in water, PB requires a carrier that is both inexpensive and easily separable. Magnetic porous biochar (MPBC) was formed by activating starch with FeCl3 through a one-step calcination method. MPBC can be used as a carrier for Prussian blue, which is easily separated from the solution. This composite material (PB/MPBC) has a rich pore structure and maintains effective surface area, which can facilitate the penetration of Cs+ into the adsorbent. Besides, PB/MPBC exhibits high selectivity and good adsorption capacity achieving a large removal capacity of 101.43 mg/g. Thus, this study provides a novel approach for preparing composites with efficient removal of Cs+.


Assuntos
Césio , Poluentes Químicos da Água , Césio/química , Porosidade , Adsorção , Água , Íons , Poluentes Químicos da Água/química , Fenômenos Magnéticos , Cinética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...